NONLINEAR DYNAMICS IN HIGH FREQUENCY
INTRA-DAY FINANCIAL DATA: EVIDENCE FOR THE
UK LONG GILT FUTURES MARKET

David G McMillant and Alan E H Speight®”

July 1999

Abstract

Testsagaing the null of linearity indicate smooth trangtion autoregressive nonlinearities
in the conditional mean of intra-day UK long gilt futures returns at the five and fifteen
minute frequencies. The higher frequency modd entails a first-order autoregressive
process with switching intercept. The lower frequency mode is firg-order
autoregressive for returns near zero, but a near random-walk for large returns,
conggtent with the rapid extraction of profitable opportunities in excess of friction
transaction cost boundaries. These nonlinearities are robust to the presence of
asymmetric and component structures in conditiona variance, but suggest that the
potentia for predictable regularities are confined to small price movements over fine
timeintervas.
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1. Introduction

Over the past decade and a half, the genre of models of generalised autoregressive conditional
heteroscedasticity (GARCH: Engle, 1982; Bollerdev, 1986) have provided the dominant means for
modelling nonlinear dependence in financid data, largely due to thair empirical successin capturing the
time-varying conditiona volatility characteridtic of the returns distributions of many financid assets.* A
popular and theoreticaly gppeding explanation for the presence of ARCH effects in asset returns,
embodied in the mixture of digtributions hypothess, is that returns evolve as a subordinate stochastic
process suchthat the distributionof returns follows a mixture of normals with changing variance, the rate
of new information arrival providing the stochastic mixing variable. Thereby, asset prices evolve a
different rates during identical intervals of time according to the flow of new information, and the
distribution of returns, when measured over fixed time intervals, appears kurtotic. As suggested by
Diebold (1986), the empirica success of ARCH-type modds may then liein their &bility to capture
saidly correlation in the time-series properties of the mixing variable, the flow of information.? In
extension of this approach, the recent examination of high-frequency intra-day data has prompted
severa researchersto suggest that volatility may more accurately be characterised by heterogenous
components reflecting heterogeneous information flows (Andersenand Bollerdev, 19974), or perhaps
the actions of heterogeneous market traders (Mdller et. a., 1997).

The andyss of high frequency intra-day dataaso raises a further consderation. Namely, the
potentia for the conditionad mean process for high-frequency returns data to be more accurately
described by a non-linear process.®> Whilst there has been extensive investigation of non-linearity in
conditiona mean in many macroeconomic time series, mostly associ ated withincreasing recognition of
the potentialy asymmetric nature of the business cycle, rdaively little research has been conducted
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seekingto identify, model or explain stochastic non-linear conditiona mean structureinfinancid market
data.* Onereason for thisisthelack of substantivelinear structurein daily or lower frequency financia
data, market returns at such frequencies typicaly approximating random walk processes, since linear
sructureisgenerdly a prerequisite for the conduct of forma satistica tests againgt the null hypothesis
of linearity.> Moreover, awell defined non-linear conditional mean structure for security returns over
a period of a day, for example, would potentidly alow informed market participants to secure
systematic profits® In contrast with such lower frequency data, intra-day data affords the linear
structurewhichmust precede cons deration of non-linearity whilst not necessarily beinginconsstent with
market efficiency given the short time intervds over which such processes are found to extend.
Particularly snce there must exis sometime interva at suffidently high frequency over which market
pricesare brought to equilibrium following disturbancedue to new information, especidly inthe context
of the gradud dissemination of information, noisetrading, or transactioncosts. Theserationaes for the
presence of linear structure, and the latter inparticular, dso providerationdesfor the presence of non-
linear structure. Especidly that of threshold form, wherethe parametersof alinear modd are permitted
to change through time due to a switching rule defined over past price movements reaive to some
threshold value.

In the invedtigation of intraday long gilt futures returns data reported here, we therefore
congder both linear and nonlinear conditional mean structures. For the latter, we adopt the smooth
trangtion autoregressive (STAR) modd (Chan and Tong, 1986; Terdsvirta and Anderson, 1992;
Granger and Terdsvirta, 1993; Terasvirta, 1994) whichdlowsfor differing market dynamicsaccording
to the magnitude of returns, motivated by consderations of market frictions, such as noise trading and

transactions costs, which create a band of price movements around the equilibrium price with



arbitrageurs only actively trading whendeviationsfromequilibrium become suffidently large. Following
confirmatory preiminary tests for the presence of threshold non-linearities, STAR conditional mean
estimates are reported. The robustness of that nonlinear mean structure to the presence of ARCH
effects is examined through joint estimation under maximum likelihood using one of two extengons of
the basc GARCH framework which permit conditiond variance asymmetry or heterogeneity
respectively. Theformer isprovided by the exponentiad-GARCH (EGARCH) modd of Nelson (1991),
which has a correspondence with the informationd flow hypothes's discussed above, whilst the latter
is provided by the Engle and Lee (1993) component-GARCH (CGARCH) modd, whichpermitsthe
decomposition of conditiona voldility into long-run and short-run eements, in keeping with recently
advanced notions of voldility heterogenaity inintra-day financid data.

The remainder of the paper is organised as follows. In the following section we outline the
empirica modes to beestimated and further discusstheir properties and reationship to issues of market
dynamics. Section 3 describes the data and ingtitutiona setting from which it is drawn, provides
nonparametric kernel dendty estimates of the data distributions and reports the results of preiminary
tests for nonlinearity in conditional mean. Section 4 discusses issues of modd specification and
evauation, and reports conditional meanand variance estimates. Section 5 providesasummary of our
findings and their interpretation, and concludes by noting their implications for considerations of market

efficency and the activities of market agents.

2. Models
2.1. Market Frictions, Threshold Nonlinearities and the ESTAR Model

An issue which has received much attention in the empirical finance literature of late, and which offers



an gppeding explanation for asymmetries in market returns, is related to the phenomenon of ‘noise-
trading'. The rationde generdly offered for the exisence of noise trading is thet it dlows privately
informed tradersto profitably exploit ther informationa advantage, without which market efficiency
would not be assured (eg. Kyle, 1985). That rationde does not, however, explainthe reasons for noise
trading, onwhichthere are differing views. Thus, noisetrading may beregarded asresulting either from
rationa agents trading for liquidity and hedging purposes, condstent with a fully-rationd efficient-
marketsperspective (Diamond and Verrechia, 1981; Ausubel, 1990a,b; Biassand Hillion, 1994; Dow,
1995; Dow and Gorton, 1994, 1996), or astheactionsof irrationd (or not-fully rationd) agentstrading
on bdiefs and sentiments that are not judtified by news concerning underlying fundamentds (Black,
1986; Schieifer and Summers, 1990; DeLong et. d., 1990). An interesting dternative interpretation
recently offered by Dow and Gorton (1997) suggests that delegated portfolio managers may engage
in noise trading in order to appease dients or managers who are unable to distinguish purposeful
inaction from non-purposeful inection, as a result of which the amount of noise trading can be large
compared to the amount of hedging volume and Pareto improving.

Whatever the underlying reasons for noise trading, its existence means that profitable
opportunitieswill arisefor privately informed and arbitrage traders. In early recognition of the potentia
nonlinear consequences of such trading activities, Cootner (1962) notes that the activities of noise
traders will cause pricesto hit upper or lower ‘reflecting barriers' around equilibrium, and thus trigger
arbitrage activities by informed traders which push prices back to equilibrium. The existence and
postion of such barriers will likdy depend on the existence and dze of market frictions such as
transactions codts, giving rise to a band of price movements around the equilibrium price with fully

rationd traders only actively trading when deviations from equilibrium are sufficently large to make



arbitrage trade profitable (He and Modest, 1995). Such opportunities are unlikely to be long-lived,
exiging only for aslong as reassessment of underlying fundamentasin the light of news may warrant.
However, while the actions of individud traders may be represented by asmple threshold modd which
imposes an abrupt switch in behaviour, only if al traders act Smultaneoudy will this dso be the
observed market outcome. For a market of many traders acting at dightly different times a smooth
trangtion modd is therefore more gppropriate than a*heavisde' threshold modd.

I n previous examinations of intra-day asset pricevaldility, the differencedlogarithm of the asset
price hastypicaly beenmoddled asalinear autoregressive (AR) process of order p, suchthat the asset

return, r,= log(p,/p, 1), is described by:

1) b, = In"'z; EF TS,
ra

In order to invedigate the posshility of threshold nonlinearities due to noise trading of the form
described above, we consider the nonlinear STAR(p) generdisation of (1), expressed in generd form

(Terdsvirtaand Anderson, 1992; Granger and Terésvirta, 1993) as.
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where F(.) denotesatrangtionfunctiondefinedover atrangtionvariable, provided here by the lagged

return value, r,_ 4, Whered isthe delay parameter. One interpretation of (2) isthat », is described by

the linear model in the second term on some occasions, and by that process with the addition of the

potentidly non-linear component in the compound third term on other occasions. Alternatively, the



components F(r,. 2)(8y) and F(r, ) (2 0, ,) maybeinterpreted as rendering the intercepts
-1

and autoregressive parameters of the mode time-varying, and (2) therefore as belonging to the class
of state-dependent modds (Priestley, 1988). The trangition function utilized here is of the exponentia

form:
©) Foo g = 1- ep(-1({r, ;- ¢)?% v>0,

where ((isasmoothing or transitionparameter and ¢ athreshold parameter, the combinationof (2) and
(3) yidding the exponentid-STAR (ESTAR) mode, whereby the parameters in (4) change

symmetricaly about ¢ with r, 4, such that as  (r, g~ ¢)~0, F(r, g0, ad as (. g~ )=,
F(r, »~1, whildaseither (64 or (60 the model reducesto thelineer ARform.” Thus, theESTAR

mode implies that the dynamic process for moderate returns will differ from that for larger returns,
irrespective of sign.®

A practical problem frequently encountered in the estimation of STAR models concerns
convergence and precision in estimates of the smoothing or transition parameter, (. In particular, a
large ( vaue results in astegp Sopefor the transitionfunctionat ¢, and alarge number of observations
in the neighbourhood of ¢ are in principle required in order to estimate ( accurately. Consequently,
with changes in (_having only a minor effect upon the transition function, the convergence of ( can

prove problematic. A solution to this problem, suggested by Terésvirta (1994) and adopted in

esimationhere, is to scale the amoothing parameter by the variance of the trangtionvariable, o’(rz_ PA

yielding the revised trandtion function:



(3) R, p=1-eml-v{, ;- oY/6%0, )]

with gppropriate adjustment required in interpretation of the resulting estimate of (.

2.2. The Exponential-GARCH (EGARCH) Model

Theinitid mode of conditiona voldility examined is the exponentidd GARCH (EGARCH) mode of
Nelson (1991). The sdlection of the EGARCH modd is motivated by its close relaionship with the
mixtureof digtributions hypothesis, origindly due to Clark (1973), whichviewsthe variahility of security
prices as arigng from differences in information arrival rates. The standard model assumes a fixed
number of traders possessing different expectations and risk profiles, resulting in different reservation
prices. Market clearing requires that the equilibrium price be the average of these reservation prices.
Information arrival then causes traders to adjust ther reservation prices, which in turn causes trade,
which then changes the market price. Under the assumption that these price changes are normally
disgtributed, it has been demonstrated that the aggregate of price changesand traded volume are jointly
stochastic independent normds (Tauchenand PFitts, 1983; Galant Hsieh and Tauchen, 1991). Where
information events vary over time, price changesat the daily frequency, for example, are the sum over
intraday price changes. By appedl tothe Centra Limit Theorem, aggregated price changes are then
described by mixtures of indegpendent normas, where mixing depends onthe rate of informationarriva.
In keeping with this framework, following Nelson (1990, 1991), the EGARCH model has lognormal
conditional variancein continuous time, withthe implication that as the sampling interva becomes finer
in discrete time, the digtribution of innovations approaches a conditionaly norma mixture of

distributions, thereby formally linking the EGARCH and mixture of distributions approaches®



Notationdly, let the asset return r, have an expected return m, (given by the conditiond

expectation of ether the AR or ESTAR mode defined above), and conditional variance given by

hf =var(r,|¥, )= B((r,- ”":)2|‘|’;- 1), where s, definesthe set of al informationavalable at

time t-1. Thefirs-order EGARCH modd, whichisaso the appropriate empirical model order further

below, is then given by:
4 log(h)) = © +@(le,,|/|h )+ (e, /b )+ Blog(h2))

where the logarithimic form ensures conditiona variance non-negativity without the necessity of

condraining the coefficientsof the modd. Regarding the coefficients of (4), the parameter e captures

the volatility clustering effect that is characteristic of ARCH processes, a positive vaue indicating that

large (smdll) shockstend to followlarge (smdl) shocks of randomsign, while the parameter B captures
the degree of persistence in shocks to voldility, with half-life decay given by log(6.5)/log(B). The
potentidly asymmetric effect of positive and negative shocks on conditiona variance is captured by a

non-zero vaue for the parameter .. For {»0, log(hf) responds asymmetricaly to (e, 4/h, ;) in
a piecewise linear manner: where that ratio is postive, log(hf) islineer in (e,.,/h,. ;) with dope

(C+e), whilstfor (e, ,/h, ) <D, logfhf) islineerin (e,.,/h,. ;) with dope (- ).

2.3. The Component-GARCH (CGARCH) Model
While the preceding EGARCH representation of volatility is based on assumed homogeneity of the

price discovery process, it has recently been suggested that intra-day returns volatility may more
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redidicaly comprise heterogeneous components (eg. Andersen and Bollerdev, 1997a). Such
components may reflect differing market reactions to differing sources and types of news, or the
differing reactions of market agents with heterogeneous postions and time horizonsto the sameitems
of news (Muller et. d., 1997). On ather view, returns volatility will consequently be dominated by
trangent or short-run volatility over higher data frequenciesand by more persistent or long-run volaility
over lower data frequencies.

Inorder to examine the data for the possible presence of such components weimplement the
component-GARCH mode of Engle and Lee (1993) which facilitates the decomposition of volatility
into along-run or (inter-day) component, and a short-run (intra-day) component.’® This (necessarily

first-order) CGARCH mode is given by the joint process.

(58) h! = 4" “(93-1'9';-1>"' B<h31-4.-1>

(5b) g, =0 tpg,, T "h)
wherethe forecagting error (93 -h 3} serves as the driving force for the time-dependent movement of
the long-run component, ¢, , and the differencebetweenthe conditiona variance and long-run voldility,

hf - ¢,, defines the short-run component. The initial impact of ashock to the transitory component

isquantified by **, while $ indicatesthe degree of memory inthe transitory component, the sum of these
parameters providing a messure of transtory shock persistence. The initid effect of a shock to the
permanent component is given by N, with persistence measured by the autoregressive root, D, and

where 1>p>(ee +B ) the transitory component decays more quickly than the permanent component



such that the latter dominates forecasts of the conditiona variance as the forecasting horizon is
extended. The conditiond variance is covariance stationary provided that the permanent component

and the transitory component are both covariance stationary, as satisfied by p<1 and (e +p)<1

respectively, while the additiond restriction of non-negetivity onthe model parametersensuresthat hf

is non-negative aslong as g, is non-negative.™

3. Dataand Preliminary Diagnostics
3.1. Data and Market Background
The data analysed here congists of the prices of UK government bond (Long Gilt) futures contracts
traded onthe London Internationa Financid Futures and Options Exchange (LIFFE), whichisalso the
datasource.> TheLong Gilt futures contract is of interest as a heavily traded investment and hedging
ingtrument, the mainusersof which LI FFE identifiesas market makers, inditutional investorsand issuers
of long-termdebt; for purposes of hedging, investment, asset alocation, portfolio insuranceand duration
adjustment, such activities being primarily driven by congderation of long-run factors and underlying
fundamentals. A further feeture of the Long Gilt futures market isitslow margin requirement, which
encourages a degree of short-term speculationand provides circumstances conducive to noise-trading
of the manner described in the previous section.

The sample coversthe period 24th January 1992 to 30th June 1995. The contract price data,
p, is sampled a five and fifteen minute intervas and transformed to yied the returns series,

r, = log(p,/p,. 1), With the overnight return excluded so asto ensure consistent time-series™®  With

846 trading days inthe sample period, thisyields 80,163 observations at the five minutefrequency, and
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26,721 observations a the fifteen minute frequency.*

As hasbeennoted e sawhere, highfrequency intra-day datais strongly characterised by high-
frequency periodicity corresponding to proximityintimeto market opening and dosng, macroeconomic
and other sysgematic newsreeasesand other factors, and where the strength of theseintra-day effects
is such that falling to adjust for them can result in mideading andyss of the dynamic dependenciesin
the data (Goodhart et. d., 1993; Andersen and Bollerdev, 1997b; Guillaume et. d., 1997; Goodhart
and O'Hara, 1997). Prior to estimation, we therefore follow Andersen and Bollerdev (1997Db) in
standardising returns by the mean absolute vaue for eachintra-day time intervd, a both the both five
and fifteen minute frequencies® 1 Summary statistics for the data, both before and after adjustment
by standardisation, including measures of central tendency, skewness, kurtos's, testsof normdity, and
sective correlogram vaues for the levels and squares of the series, arereported in Table 1. SAf-
evidently, adjustment increases the range and standard deviation of the underlying series, whichhasthe
indirect benefit of aiding parameter convergence in estimation. Otherwise the basic properties of the
datearelittle affected. Thedistributiona properties of the adjusted dataare further illustrated in Figure
1, which depicts the results of nonparametric Epanechnikov kernel density estimation for both data
frequencies, where bandwidth sel ectionisdetermined according to the data-based criteria of Silverman
(1986). The*peskedness reativetothenormd indicated by the kurtossdtatisticsin Table 1isclearly
obvious in both digtributions, and further motivates the consideration of GARCH processes below.
Additiondly evident are the ‘peaked shoulders in the distributions, also present in the comparable
digtributions of the unadjusted data, and most pronounced in the fifteen minute frequency data, which
suggests aconcentration of data pointsameargin either sde of the zero mean, and more so onthe upper

sdeof the digribution. This property further suggeststo usthe influence of gnificant market frictions,
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suchthat beyond samdl returnvauesarange of price changes become more pronounced and numerous,
and reinforces our cons deration of threshold models able to accommodate this festure below. Before
proceeding to the estimation of such models, however, we first consder formd datistica tests for the

presence of such nonlinearities.

3.2. Preliminary Diagnostics
The specification of priminary linear AR(p) models is determined by referenceto the autocorrelation
and partid autocorrelation functions, the Schwarz criterion, the estimated log-likelihood, and residua
tests for serid corrdation.’” This identification procedure indicates that an AR(2) process is
appropriate at the five minute frequency, whils an AR(1) mode is appropriate at the fifteen minute
frequency. Modd estimatesfor these specifications are reported in the first column of resultsin Tables
2 and 3 respectively. At both frequencies, autoregressve parameters are negative and significant,
parameter values confirming the absence of long-lived persistence or drift in returns.28

Given appropriately specified AR models, we test for the presence of conditiona mean
nonlinearity following the procedure detailed in Terdsvirta and Anderson (1992), Granger and
Terdsvirta(1993) and Terdsvirta(1994). Thisentallstesting for threshold nonlinearities againg the nulll

of linearity over arange of suitable possible vauesfor the delay parameter d. The corresponding LM-

typetestof AR(iresily as mitkroandisanyivelertiothetestof tenul hypohesiscf ety Hy B, = Ba; = Bgy = 0

(#=1,...,p), aand the dterndive in the following artificid regresson:

P P P , P 3
(6) Y = Bn"' _2 Bljyz-j+ _z B:ijz-jyri-r 2 styz-jyz-i'r ) B4jyz-;‘yz-i
F=1 F=1 F=1 F=1
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The test satitic, computed as LM = T(SSR, - SSR, )/SSR, where T denotes the sample size, S8R,

the sum of squared residuds from the linear AR(p) model and S8R, the sum of squared residuds

obtained from (6), is asymptoticaly distributed as x"; IDCps 1ye2p? where d is unknown. Where

linearity is rejected for more than one value of the delay parameter, then d is determined such that

pPd)=argmin,_, pnpd), Where p(d) refersto the probability value a which the null of linearityis

magindly rejected.’® Application of these tests for al possible delay vaues1< d< 4 for both data

frequencies confirm rejection of the null hypothess of linearity in favour of STAR nonlinearity with
applicationof the minimum p(d) ruleindicating =2 at the five minutefrequency and d=1 at the fifteen
minute frequency.® 2t Given this diagnostic support for non-linear STAR modes over linear AR

dternatives as descriptions of conditional mean structure in long gt futures returns at frequencies of

both five and fifteen minutes, we proceed to full estimation of those modds in the following section.

4. Results

4.1. Model Identification and Evaluation

Egtimation of dl modes reported below is by iterative non-linear least squares. The vdidity of the
estimated models is appraised on the basis of the Sgnificance of autoregressive terms and examination

of coefficient estimates, in particular ensuring that the trandtionvalug, ¢, iswithintherange of { 7, } . The

Akake and Schwarz information criteria are dso used to guide selection amongst competing models

(Terésvirta, 1994). The properties of the mode residuas are dso examined, both for departuresfrom
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normdity and for remaining ARCH effects. We dso examine the dynamic properties of the regimes

corresponding to F(r, p=0 and F(r, p=1 by inspecting the roots of the relevant characteristic

polynomias, aswel asthe dynamic properties of the full modds. Inthe absence of agenera andytica
solution, the latter procedureis performed numericaly, usng data generated from the estimated model
after setting the error term to zero, with a sequence of observed vaues of the series acting as sarting
vaues, severd of thelatter being consdered. For the models under investigation, thismay resultina
unique stable equilibrium, alimit cycdle such that a set of val ues repesat themsalves perpetudly, chaotic
redisations, whereby a smdl change in initid vaues results in divergent but stable limit points, or

explosve vaues (in which case the modd is rejected).

4.2. Nonlinear Dependence in Conditional Mean and Conditional Variance

Prdiminary estimates of ESTAR models of nonlinear dependence in conditional mean done are
reported in the fourth column of resultsfor eachfrequency inTables 2 and 3. The properties of these
models are broadly amilar interms of specification, parameter Sgn and magnitudeto thosewhichobtain
under joint conditional meanand conditiona variance estimation, withthe exception that the estimated
trandtion parameters are drictly satigticaly inggnificant suggesting a degree of misspecificationdue to
the conditiond variance structure not being modelled (though see the discussonin2.1 above), and the
remainder of our discussion therefore focuses onjointly estimated models of nonlinear dependencein
bothconditional meanand variance. ESTAR-EGARCH and ESTAR-CGARCH estimationresultsare
reported inthe fourthand fifthcolumns of Tables 2 and 3, withcorresponding AR-EGARCH and AR-
CGARCH estimation results reported in columns two and three of those Tables for purposes of

comparison.
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4.2.1. Five Minute Fregquency Results
At the five minute frequency, of immediate note is the reduction in model order relativeto the linear

case. For theresulting ESTAR(1)-EGARCH modé, the central regime correspondingto.F(r,. p)~ 0,
whicharisesas (. z~ €)= D, isdescribed by an AR(1) process, whilst the outer regimes corresponding
to F(r,. P70 as (r g~ ¢)~e invokes an additional AR(0) process® Thus, there is significant

negative autocorrel ationinreturns irrespective of size, with the nonlinearity present being described by
a shifting intercept dependent on the magnitude of returns relaive to the interva norm. The latter
specificaly implies Sgnificant negetive drift in returns in the neighbourhood of the threshold vaue, but,

onnet, atendency towards posttive drift for larger returns of either sgnas F(r,. p~ 1. Bothregimes

of the model aretrividly stationary, and the full modd is characterised by stable roots and anear-zero
unique limit point (0.0044), with rapid adjustment to equilibrium within goproximately eleven periods,
or fifty-five minutes. The estimated vaue of the threshold parameter, ¢, suggeststhat the central regime
characterises returns that are around one and three-quarter times higher than the interva norm
(standardised in relation to the intra-day interval average).

Trandtionbetweenregimesisdictated by the estimated trangtion function, which is portrayed
in Fgure 2(a). The estimated trangtion parameter vaue of 0.14 (or 0.32 after reversing the scae
transformation), significant at the ten per cent level, suggests amoderate speed of trangtion between
regimes, and therefore a tendency for returns to sojourn in the centre regime. The minimum of the
function corresponds with the threshold parameter, its widthinthe neighbourhood of ¢ determines the
range of the centra regime, whilst its stegpness (symmetric about ¢) determinesthe speed of trangtion

between the centre and outer regimes. The mid-points between regimes occur for the data vaues (-
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1.5,5.0), expressed as multiples of interva means. That is, the mid-way trangition point between the
centre and outer regimes is passed when returns are faling by one-and-a-haf timestheir average for
that intra-day five minute interva, or risng by five timestheir normd interva vaue. An goproximate

measure of the width of the centre regime, correspondingto F (r,_ g <0.2, yieldsthe pair of data points

(0.0, 3.5); that isreturns ranging from zero to three-and-a-half times the rdevant five minute interva
norm. Fndly, and consstent with AR-EGARCH mode estimates, conditiona variance parameters
for the five minute frequency ESTAR-EGARCH modd indicate a high and significant measure of
persistenceinshocksto volailityof 0.97, implyinghdf-life decay injust under two hours, and sgnificant
volatility dugtering, but no evidence of significant asymmetry in volatility with respect to shocks of
differing Sgn.

ESTAR-CGARCH modd estimates at the five minute frequency confirm the magnitude and
sgnificance of the ESTAR parameters discussed above, but with some increase in the threshold
parameter, decrease in the trangtion parameter, and the additiona sgnificance of the centre regime
intercept. The preceding discussion therefore mostly continues to hold, other than that the mid-points
between regimes now occurs for data values (0.5, 7.5), or returns of one-hdf and seven-and-a-half

times their interval average, while the central regime has a width corresponding to F(r, » <0.2 of

(1.9, 5.8), or returns of gpproximately two to Sx times thelr average intervd vdue. This estimated
trangtionfunctionisportrayed inpand (b) of Figure2. Concerningthe CGARCH parameter estimates,
the initid effect of a shock to the permanent component of volatility, as quantified by the parameter N,
is fairly modest at under 0.2, while the autoregressive root, D, is strongly significant at over 0.99,
uggedting very srong persstence in the effect of such shocks, with a hdf-life decay of gpproximately

four days. Both parameters of the transitory component are sgnificant and provide ajoint persistence

16



measure of over 0.9, implying a hdf-life decay in shocksto trangtory volatility of gpproximately 35
minutes

In a comparison across estimated modds at the five minute frequency, the log-likelihood is
clearly maximized in the ESTAR-CGARCH case. Testing between linear and nonlinear mean
specifications at the five minute frequency cannot be conducted using likelihood ratio tests due to the
non-nested nature of the modds arising from the difference in the AR and ESTAR autoregressive
orders. Likelihood ratio testing between EGARCH and CGARCH specificationsisaso not possible.
We therefore discriminate between these non-nested models on the basis of information criteria
minimization. Employing both the Akake information criterion (AIC) and Schwarz (Bayesan)
information criterion (BIC), CGARCH variance specifications are preferred amongst both AR and
ESTAR modes when consdered separately. However, between those AR-CGARCH and ESTAR-
CGARCH modds, while the BIC margindly favoursthe former, the AIC margindly favours the latter.
Resdua diagnogtics indicate resdud non-normdlity, primarily dueto excess kurtos's, reinforcing the
use of Bollerdev-Wooldridge robust standard errors in the appraisa of parameter significance
conducted above. However, LM testsindicate the presence of remaining ARCH effectsfor dl models,

though only of first order form for both CGARCH modes?3

4.2.2. Fifteen Minute Frequency Results
At the fifteen-minutefrequency, a STAR(1)-EGARCH mode again holds, but now withsgnificant first

order autoregressive parameters and insignificant intercepts for both F(r,. ))=0 and F(r, ;)7 0.

Moreover, estimated autoregressive parameter vaues are gpproximately equa but of opposing Sgn

suchthat, for F(r,. p)= 1, returnsinthe outer regimes are described by driftless random walks, whilst
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for F(r, =0, returns described by the centra regime are characterised by significant negative

autocorrelation. Trangtion between theseregimesisagain governed by theestimated trangtion function
parameters, ( and ¢, which yidd the transition function depicted in Figure 3(a). The estimated
threshold vaue is again postive in vaue, but now gatidicaly insgnificantly different from zero. The
estimated trangtion parameter of around 0.25 (or 1.51 after reversing the scae transformation), again
sgnificant at the ten per cent level, suggests afar greater speed of trangtion between regimes than a
the five minute frequency. The mid-points between regimes occur for the vaues(-2.5, 5.5), suchthat
mid-way trangition between the centre and outer regimesoccurs whenreturnsarefalingby two-and-a-
hdf times ther interval average, or rigng by five-and-a-haf times their interval average. The

gpproximate width of the centre regime, corresponding to K (r,. ) <0.2, isdelimited by return vaues

relative to intervad norms of (-0.7, 3.8). The modd is again characterised by stable roots in each
regime, withanear-zero unique limit point (0.0153) achieved within eight periods, though the mgority
of adjustment to equilibrium occurs in only four periods, or one hour. Conditiona variance parameters
for the fifteen minute ESTAR-EGARCH (and AR-EGARCH) modd continue to indicate a high and
sgnificant measure of persistence inshocksto voldility at over 0.98, implying ashock persistence hdf-
life of over nine hours, or more than afull trading day, and Sgnificant volaility clustering, but again no
evidence of sgnificant asymmetry in volaility with respect to shocks of differing sgn.
ESTAR-CGARCH egtimates confirm the preceding mean mode interpretation for fifteen
minute returns, though the threshold parameter is much reduced and continues to be dtatistically
indiginguishable from zero, whilst the trangtion parameter is increased and dgnificant at the
conventiond 5% probability level. The trangtion function, depicted in Figure 3(b), is more closdy

centred on zero, with faster transition between regimesdictated by the (-estimate of 0.44 (2.66 after
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scae transformationreversal). The regime transition mid-points now correspond to the datavaues (-

2.5, 3.5), and the central regime range measureidentified by F (r,_ ) <0.2 to(-1.1, 2.2). Thus returns

rapidly move to a random walk process once they have fdlen by more than their average absolute
vaue, or risen by more than twice thar average vaue. Concerning return volatility, CGARCH
parameters are again sgnificant throughout, with very strong permanent component persistence now
implying a shock haf-life of gpproximately ten days at the fifteen-minute frequency, whilst trangtory
component shock persstence exhibits a hdf-life of amost exactly one-hour.

Fndly, across fifteen minute frequency model's, eval uation of linear meanversus nonlinear mean
modes is possble on the basis of likdihood retio tests, and the nonlinear ESTAR dternative is
consstently favoured.®*  In discriminating across al models, both the AIC and BIC criteria clearly
favour the ESTAR-CGARCH specification. Moreover, resdua ARCH effectsareinsgnificant for the
ESTAR-CGARCH modd at dl lag lengths, suggesting that dl volatility structure is adequately
captured.® Thebroader interpretation and implications of thesefindingsare discussed in thefollowing

concluding section.

5. Summary and Implications

Motivated by consderations of market frictions and heterogenetiesin information flows and market
agents, the empirica evidence reported here has sought to identify the source of nonlinear dependence
in futures returns, with particular regard to the potential for such dependence to arise ether in
conditiona mean or conditiona variance, and separately or jointly. Preliminary tests againgt the null of
lineaxity indicate the presence of smooth trangtion autoregressive nonlinearity in the conditional mean

of UK long gt futures returns at both the five and fifteen minute frequency. At the five minute
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frequency, the estimated linear model issecond-order autoregressive, whilst the nonlinear STAR model
conggtsof afirg-order autoregressive process with switching intercept. That structureisrobust tothe
joint estimation of conditiona variance processes of ether exponentid-GARCH or component-
GARCH type. Theformer confirmsthe presence of Sgnificant clustering and perastencein conditiona
volaility, whilst the latter entails the successful decompogtion of volatility into along-lived permanent
component and amore ephemerd transitory component. At thefifteen minutefrequency, both AR and
STAR processes are of first-order, the nonlinear process exhibiting negative autocorrdation for smal
returns near zero, but with cancelling coefficients cons stent withnear random-walk behaviour for larger
returns of ether agn. This structure is aso robugt to the joint presence of EGARCH or CGARCH
conditiond varianceprocesses, withthe STAR-CGA RCH specification being unambiguoudy favoured
on the basis of modd sdection criteriaand resdud diagnostics.

The persstence of return movements at the five minute frequency, and for larger returns
especidly, srongly suggeststhat the market does not adjust to equilibriumwithinthat finehighfrequency
timeinterva. The perastence of smdler returnsbut not larger returns at the fifteen minute frequency
suggests that the market is dow to respond to small price movements, but that the profitable
opportunities implied by larger movements are mostly eiminated within the quarter-hour, with the
greater part of convergence to full equilibrium in the absence of further shocks being achieved in
approximately one-hour. The sgnificance of the component structure to volatility is particularly
pertinent in the light of recent arguments suggesting its existence is due to heterogeneity in information
flows or heterogeneity in trader types. In conjunctionwith the empirica findings reported here, these
condderations lead us to conclude that long gilt futures market returns are driven by the response of

heterogeneous traders to heterogeneous information flows, possibly with a degree of noisetrading in
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response to smdler return vaues, but with the farly rgpid extraction of profitable opportunities
consgent withweak-formmarket efficiency following larger price movementswhenmeasured rdive
to the rlevant intra-day time interva average.

Our findings dso have broader implications for congderations of market efficiency and the use
of technical andyds. The existence of nonlinearitiesin market returns might generdly be expected to
dlow the potentid for predictable regularities. What is demongtrated here isthat such regularities are
confined to only a very high frequency of time intervd and only smdl movements in prices.
Nevertheless, for those frequencies and range of price movements, the potentid for tapping those
regularities, possibly through the use of technica anayss or trading rules, remains. The efficient
markets hypothess may therefore not be expected to hold at the higher intra-day frequencies as the
mechanisms by which markets adjust to equilibrium are a work, and the apparent widespread use of
technical andysis infinancia markets that has been documented may receive some empirical support.?

On that levd, the resultsreported here may also be interpreted asillugtrating the rate at which market
pricesimpound new information over the higher intra-day frequencies, particularly if some information

may initidly be private prior its market dissemination.
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Tablel. Summary Statistics: Unadjusted and Adjusted Data -
Five and Fifteen Minute Frequencies

Frequency: Five Minutes Fifteen Minutes
Data: Unadjusted Adjusted Unadjusted Adjusted
Mean 2.55x107 0.000298 8.13x107 0.000971
Median 0.000000 0.000000 0.000000 0.000000
Standard Deviation 0.000562 1.5116 0.000923 2.4490
Minimum 0.0062 -22.0515 -0.0097 -22.5075
Maximum 0.0090 26.1938 0.0103 24.6209
Skewness 0.06 0.07 0.01 -0.01
Kurtosis 11.58 1111 11.40 9.72
Normality 246,163.7 219,835.0 78,540.5 50,216.04
Q. 441.77 579.30 454 53.36
Qu 468.53 618.51 74.13 75.96
Q 499.89 640.74 87.58 89.75
Q% 2,028.6 1,962.1 749.19 809.05
Q2% 10,569.0 11,139.0 3.055.9 3,395.1
Q% 14,947.0 15,026.0 3,775.6 5,148.7

Notes: For data description and details of the adjustment procedure used to accommodate intra-
daily ‘seasonal’ patternsthrough scaling by time interval mean values, see Section 3.1. Summary
statistics are mostly self-explanatory. Additionally, ‘Normality’ isthe Jarque-Beratest of the null
hypothesis of normality, distributed as g2 whichis clearly rejected throughout. Q‘[i- 1,10,20) are
sel ected values fromthe correlogram of the data, and Qf (i= 1,10,20) are selected values fromthe

correlogram of the squares of the data.




Table 2.

Model Estimation Results - Five Minute Frequency.

Model/ AR AR- AR- ESTAR ESTAR- ESTAR-
Par ameter EGARCH | CGARCH EGARCH | CGARCH
Bo 0.0003 0.0297 0.0073* -0.1068* -0.0957 -0.1337*
(0.0053) (0.0472) (0.0044) (0.0361) (0.0120) (0.0365)
B1 -0.0869* -0.1068* -0.1091* -0.0872* -0.1052* -0.1091*
(0.0056) (0.0062) (0.0040) (0.0056) (0.0051) (0.0040)
B2 -0.0228* -0.0414* -0.0392*
(0.0053) (0.0048) (0.0041)
20 0.1885* 0.2814* 0.2529*
(0.0546) (0.1053) (0.0564)
( 0.1629 0.1400** 0.1286**
(0.1348) (0.0763) (0.0765)
c 3.5510 1.7663* 3.8721*
(1.2136) (0.8961) (1.0110)
T -0.0942* 1.9949* -0.0927* 1.9950*
(0.0086) (0.1428) (0.0066) (0.1425)
D 0.9973* 0.9973*
(0.0005) (0.0005)
N 0.0160* 0.0158*
(0.0021) (0.0021)
- 0.1569* 0.0743* 0.1591* 0.0741*
(0.0076) (0.0048) (0.0076) (0.0048)
$ 0.9712* 0.8297* 0.9668* 0.8307*
(0.0095) (0.0116) (0.0066) (0.0115)
. -0.0037 -0.0084
(0.0051) (0.0052)

LogL -146554.0 | -1374553 | -1365889 | -146542.1 | -137417.1 | -136584.3
AlC 3.6566 3.4300 3.4081 3.6563 3.4288 3.4080
BIC 3.6569 3.4308 3.4090 3.6569 3.4298 3.4002

Skew 0.07 -0.06 0.14 0.07 0.03 0.14
Kurt 11.51 1633 10.61 11.50 12.99 10.61
JB 2421585+ | 593868.9¢ | 1935005+ 333435.4* | 193467.6*

A, 1671.11* 31.32% 8.96* 1663.16* 51.00* 9.18*




Ay 5254.39* 40.31* 10.37 67.21* 10.78

47.43* 17.06 73.84* 17.44

Ay 5504.87*

Notes. For model mnemonics and specifications, see Section 2. Additionally, LogL denotes the
maximizedlog likelihood value, A1C and BIC denotethe Akaike and Schwarz (Bayesian) information
criteria, Skew and Kurt are regular measures of skewness and kurtosis respectively, JB is the Jarque-
Bera test of the null of normality, distributed as lg, and A‘is the regular ARCH LM test for lags

i=1,10,20distributed as ;". Asterisk(s) denote significance at the 5%(10%) level.

Table 3.

Model Estimation Results - Fifteen Minute Frequency

M odel/ AR AR- AR- ESTAR ESTAR- ESTAR-
Par ameter EGARCH | CGARCH EGARCH | CGARCH

Bo 0.0009 0.0122 0.0206* 0.0175 0.0427 0.0486*
(0.0150) (0.0138) (0.0123) (0.0180) (0.0323) (0.0202)
B1 -0.0448* -0.0651* -0.0713* -0.1073* -0.1252* -0.1393*
(0.0097) (0.0077) (0.0072) (0.0312) (0.0264) (0.0198)
20 -0.1040 0.0201 -0.0823
(0.1618) (0.2901) (0.1302)
21 0.0919* 0.1338* 0.1229*
(0.0394) (0.0280) (0.0256)
( 0.4152 0.2525** |  0.4438*
(0.3494) (0.1452) (0.2240)
c -0.2741 15153 0.5498
(1.6757) (1.5076) (0.9730)
T -0.0784* 5.4146* -0.0787* 5.2752*
(0.0075) (0.6261) (0.0072) (0.6256)
D 0.9960* 0.9975*
(0.0009) (0.0007)
N 0.0169* 0.0139*
(0.0024) (0.0023)
- 0.1505* 0.0914* 0.1478* 0.0896*
(0.0121) (0.0117) (0.0113) (0.0110)
$ 0.9808 0.7316* 0.9820* 0.7559*
(0.0025) (0.0319) (0.0024) (0.0285)

. -0.0111 -0.0114

(0.0083) (0.0083)

LogL -61811.76 | -58071.20 | -58744.66 | -61799.07 | -58951.49 | -58728.26
AIC 4.6268 4.4154 4.3990 4.6261 44133 4.3967
BIC 46274 4.4172 4.4011 4.6280 4.4164 4.4000

Skew -0.01 0.08 0.03 0.002 0.09 0.03




Kurt 9.90 8.91 8.85 9.82 8.87 8.81
JB 52946.09* 38866.79* 38076.52* 38332.03* 37534.74*
A, 817.02* 142.57* 4.29* 822.10* 125.74* 351
Ay 1727.35* 175.47* 9.97 161.93* 9.23
Ay 1962.56* 184.97* 11.45 171.53* 10.52

Notes: For model mnemonics and specifications, see Section 2. Additionally, LogL denotes the
maximizedlog likelihood value, AIC and BIC denotethe Akaike and Schwarz (Bayesian) information
criteria, Skew and Kurt are regular measures of skewness and kurtosis respectively, JBis the Jarque-

Bera test of the null of normality, distributed as ;g, andA‘is the regular ARCH LM test for lags
=110, distributed as;i. Asterisk(s) denote significance at the 5%(10%) level.

Notes:

1. For reviews, see Bollerdev, Chou and Kroner (1992), Bera and Higgins (1993), and Bollerslev,
Engle and Nelson (1994).

2. Other explanations for time-varying volatility based on considerations of market microstructure
include that of Kyle (1985) whereby information held by an informed trader is transmitted into prices
gradualy through information diffusion. An aternative rationale is provided the theoretical model of
Timmermann (1995), wherethe source of volatility clustering is incomplete learning and limited knowledge
of the process generating fundamentals. Other explanations which have led to extensions of the ARCH
modd, relate to the influence of macroeconomic volatility as reveadled through such variables as the
interest rate (Glosten, Jagannathan and Runkle, 1993), the money supply and oil prices (Engel and
Rodriguez, 1989) and various measures of the state of the business cycle (Schwert, 1989), while the
modeds of Sentana (1995) and Bera, Higgins and Lee (1992) have been afforded a random coefficient
interpretation.

3. There has been interest in testing high frequency data for the presence of deterministic nonlinear
dynamics of chaotic form, for which there would appear to be little evidence (Vassilicos, 1990;
Vassilicos, Demos and Tata, 1992; Vassilicos and Demos, 1994; Abhayankar, Copeland and Wong, 1995,
1997). Such tests have, however, suggested the presence of strong stochastic nonlinearities, though this
has typicaly been ascribed to the presence of ARCH effects without explicit consideration of the
nonlinear mean dternative. For an excellent review of issues and applications associated with high
frequency financial data, see Goodhart and O’ Hara (1997).

4. The few exceptions to this clam have typicaly been concerned with exchange rate data. For
example, Krager and Kugler (1993) examine the performance of threshold models using weekly exchange
rate data from the 1980's. Peel and Speight (1994) model inter-war exchange rates using threshold models
and the bilinear modd (Granger and Andersen, 1978), while Pedl and Speight (1996) model East European
black-market exchange rates using the bilinear model. Beraand Higgins (1997) examine bilinear models
for US stock prices, and the pound-dollar exchange rate. Coakley and Fuertes (1997), Obstfeld and
Taylor (1997), and O’ Connell and Wei (1997) examine rea exchange rates during the post-war float using
threshold models, while Coakley and Fuertes (1998) do likewise for nominal exchange rates.

5. This observation is compounded by the fact that if the true data generating process is indeed non-
linear, then fitting a linear model will result in a longer lag length that required by the correct non-linear
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specification (Granger and Terasvirta, 1993).

6. Additionally, the consideration of a non-linear conditional mean model for asset prices has often
been regarded as providing a competing potential explanation for the non-linear dependence implied by
GARCH models of volatility (eg. Kréger and Kugler, 1993; Bera and Higgins, 1997) rather than as
providing a complementary explanation (eg. Weiss, 1984; Peel, Lane and Raeburn, 1997; Peel and
Speight, 1998).

1. The ESTAR model may also be interpreted as a generalisation of the earlier exponential
autoregressive (EAR) model of Haggan and Ozaki (1981), the more restrictive EAR case being obtained
under Bn-c =[], that restriction making the E(ST)AR mode! location invariant.

8. Alternatives specifications for the transition function include the logistic and heaviside functions,
yidding LSTAR and TAR models respectively. The former has the capacity to accommodate the latter,
but more generdlly permits smooth transition between differing dynamics associated with positive and
negative signs for (rt_ a €Y. The ESTAR specification is preferred here for the reasons given later in the

text. However, the LSTAR model is also considered as an empirical alternative, the results of which are
noted further below.

9. For further details of the mixture of distributions interpretation of ARCH models see, for example,
Bera and Higgins (1993, pp.324-7). For further discussion of the interpretation of the EGARCH model
as a discrete time approximation to an underlying diffusion model expressed in continuous time see, for
example, Bollerdev et. a. (1994, pp. 2994-6).

10. The CGARCH model may aso be regarded as a variant of the threshold GARCH model
proposed by Rabemananjara and Zakoian (1993). On the interpretation of the CGARCH model as a
diffusion approximation process, see Engle and Lee (1996).

11. By substitution using (6) it is readily shown that the component model may be alternatively
expressed as a GARCH(2,2) model, reducing to the GARCH(1,1) case if m=p=0 or p=d=0. The
GARCH model is thus only capable of describing at most one element of the more general condition
variance component specification and represents the long-run component only under the specific
conditions s=B=0,p=1. It is due to this limitation of the basic GARCH form, and its representation as
a specia case of the CGARCH model, that the basic GARCH form is not given explicit consideration
here. It should also be noted that whilst the CGARCH model be extended to asymmetric form, given the
lack of empirical support for conditional variance asymmetry in the EGARCH model estimates reported
further below, we do not pursue the ACGARCH form here.

12. A financial futures contract is formally defined as an agreement to exchange a specified quantity
and quality of an underlying asset at a specified date in the future for a price agreed at the time the
contract is traded. The contract can either require physical delivery of the underlying asset or can be
cash settled. A cash settled contract requires a cash amount to be paid on the delivery date, that sum
reflecting the difference between the initid futures price and the price of the underlying asset at
settlement. The price agreed when the futures contract is traded is not paid or received in full nor does
the underlying product change hands at this point. Instead, margin is lodged by both the buyer and seller
of the contract. This margin acts as financial surety that they can, should they need to, fulfil their side of
the contract. On the last trading day of a futures contract, the price of the contract will converge to the
price of the underlying asset. Prior to expiry these two prices may be different. This is primarily due to
the different financial circumstances caused by having a position in a futures contract rather than in the
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underlying asset, such as the absence of interest or coupon payments, and the fact that when a future
is purchased there is a much smaller cash outlay, and the difference in outlay can be invested to earn
interest. However, arbitrage ensures that futures price movements are closely correlated with movements
in the price of the underlying asset.

13. LIFFE futures contracts have four, quarterly, delivery months, in March, June September and
December. Since several contracts may be traded simultaneously, and given the continuous series
requirement, a decision must be made as to which contract price to take at any given point in time. In
the case of Long Gilt futures the contract can be delivered at the seller’s discretion on any business day
in the ddlivery month up to two days prior to the last business day of that month. In their examinations
of bond futures, Becker, Finnerty and Kopecky (1993, 1995, 1996) use the nearest delivery date contract
until two days from the start of the delivery month at which point they switch to using the next nearest
delivery contract. We follow Abhyankar et. a. (1995) and Buckle et. a. (1998) in basing the choice of
contract on traded volume. Thus, the switch of contract here occurs on the day on which volume in the
second nearest contract exceeds traded volume in the nearest contract. This is approximately one month
before expiry of the nearest contract but is not a fixed distance from expiry. Having already excluded
the overnight return there is no further requirement to adjust the series as a result of the change in
contracts. Nevertheless, the effect of this splicing of contracts on the estimates reported in Section 4 is
tested for as a matter of empirical robustness, the results of which are noted where appropriate.

14. Our attention is restricted to the five and fifteen minute frequencies due to the lack of linear
autoregressive structure at lower frequencies, for the reasons set out in the Introduction. A possible
objection to the use of high frequency fixed interval intra-day transactions data, is that no transactions may
occur during some intervals such that the very measurement of returns becomes problematic. This issue
is not peculiar to intra-day data, since the problem of sporadic trading also arises to some degree in lower
frequency data, but it is potentialy more acute at the intra-day frequency. However, for the heavily
traded contract analysed here the problem does not arise. Over the entire data set, zero return and volume
incidences account for only 3% and 0.4% of data points at the five and fifteen minute frequencies
respectively.

15. Various adternative adjustments for systematic intra-day effects have been proposed in the
literature, including the use of interval dummies (Ballie and Bollerslev, 1990, 1991), time-scaling
(Dacorogna et. a., 1993), Fourier transforms (Anderson and Bollerslev, 1994) and artificial neural
networks (Lo, 1994). In order not to compound the potential nonlinearities we are testing for, we forego
the latter approaches in favour of the methodology described in the text. For a more detailed discussion
of the intra-day deterministic patterns in LIFFE futures returns and volume data, including that analy sed
here, see ap Gwilym, McMillan and Speight (1999), and for an examination of aternative intra-day
seasona adjustment methods in LIFFE FTSE-100 futures in particular, see McMillan and Speight (1999).

16. Given that the floor trading times for Long Gilt futures changed on August 1st 1994 from 8:30am-
4:15pm to 8:00am-4:15pm, this standardisation exercise is conducted separately for both sub-periods so
as not to confound the intra-day deterministic pattern. The effect of this change in trading times on the
estimates reported in Section 4 istested for as a matter of empirical robustness, the results of which are
noted where appropriate.

17. To check for the absence of remaining seria correlation the heteroscedasticity-robust LM test
of Wooldridge (1990) was employed. Results available upon request.
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18. The presence of negative autocorrelation in high frequency returns is not uncommon, various
explanations for which have been proposed, including inventory concerns of market makers and bid-ask
bounce. For further discussion see Goodhart and O’ Hara (1997, pp.95-6).

19. The rationade for such a selection method is as follows. When d is correctly specified, (6) is the
appropriate auxiliary regression against the non-linear dternative. If another d is selected, then (6) is mis-
specified. The power of the corresponding test against the mis-specified non-linear model will thus be
weaker than the power of the test based upon the correctly specified auxiliary regression.

20. The exceptions to linearity rejection at the 5% significance level arise for d=1 a the higher
frequency and for d=2 and d=3 at the lower frequency. Test statistic values for increasing values of
d (probability vaues in parentheses) are, at the five minute frequency, 14.82 (0.19), 55.74 (5.67x10%),
37.45 (9.68x10°%), 21.83(0.03), and at the fifteen minute frequency, 42.16 (3.71x10?°), 3.86 (0.28), 7.43
(0.06), 10.38 (0.02).

21. On the basis of a series of nested tests using (6) and given the limitation of assuming d is known,
in which case the LM test statistic is asymptoticaly distributed as x‘;,, it is also possible to discriminate
between the ESTAR model and the LSTAR variant noted previously. The sequence of hypotheses tested
are: (1) Hpg:Pay=0: (il) Hys: Pyy= 0] Byy=0; (iii) Hog: Py;= 0| By;= Pay= 0;(f=1....p). Therationae behind
this sequence is based on interpreting the coefficients Py; as functions of the parameters of the STAR
modd. Thus, if (1) is accepted and (ii) is rejected the ESTAR variant may be preferred. If either (1) is
rejected, or (1) and (ii) are accepted and (iii) is rejected, the LSTAR variant may be preferred. Adopting
the d values indicated in the text, test statistics values at the five-minute frequency are (1) 1.94, (ii) 43.93,
and (iii) 9.88, reative to K: critical values of 12.59 and 10.64 at the 5% and 10% significance levels
respectively, clearly confirming preference for an ESTAR specification. At the fifteen minute frequency,
test gatistic vaues are (1) 29.06, (i) 9.61, and (jii) 3.51, relativeto xg critical values of 7.81 and 6.25 at

the 5% and 10% significance levels. The latter are somewhat inconclusive, and whilst this may imply a
possible LSTAR specification, in estimation that model was found to behave poorly in terms of parameter
identification, and is in any event not well motivated in the context addressed here, having typically been
applied previoudly in the analysis of macroeconomic business cycle asymmetry. The LSTAR aternative
is therefore not considered further here, though further details are available upon request.

22. Autoregressive parameters associated with non-zero vaues of the transition function terms
proved insignificant in estimation.

23. In an attempt to model these effects longer lag lengths were examined. Whilst a GARCH(2,2)
specification was found to adequately capture remaining ARCH effects, and provides further support for
our analysis of the CGARCH model (see n.11 above), the estimated model failed to satisfy necessary
GARCH parameter restrictions, and is therefore not discussed further.

24, Likelihood ratio test values are, for the following comparisons, AR versus ESTAR , 25.38, AR-
EGARCH versus ESTAR-EGARCH, 39.41, AR-CGARCH versus ESTAR-CGARCH, 32.80, relative
to 5% and 1% critical values of 9.49 and 13.28 respectively.

25. A range of further tests confirm that the results reported in the text are robust to consideration
of a number issues raised in preceding notes. First, Wald tests for the significance of a dummy associated
with the extended opening of the long gilt futures market in August 1994 (see n.16) are insignificant in dl
conditional mean equations for both frequencies. Second, conditional mean dummies associated with
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contract rollover dates in the construction of continuous returns series (see n.13), whilst significant but
with no conformity of sign, have no or negligible impact on other parameter estimates. Third, conditional
mean and variance dummies reflecting the time-to-maturity of specific futures contracts, whilst smilarly
generally significant but of no consistent sign, also have little or no effect on model parameter estimates.
Full details of these robustness exercises, for both data frequencies and all models reported in the text,

are available on request.

26. See, for example, Taylor and Allen (1992).
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